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A B S T R A C T   

Nature plays a major role in the development of new drugs which helps in preventing and treating human 
diseases. Anti-obesity compound database (AOCD) contains comprehensive information on all published small 
molecules from natural sources with anti-obesity potential targeting pancreatic lipase (PL), appetite suppressant 
(AS) and adipogenesis (AD). Presently the database contains 349 compounds isolated from 307 plants, 26 marine 
and 16 microbial sources. Users can query the AOCD database (https://aocd.swmd.co.in/) in several ways. The 
database was divided into three datasets (PL, AS and AD) to perform chemoinformatic analysis using Platform for 
Unified Molecular Analysis (PUMA), which were analyzed based on molecular descriptors, scaffold diversity and 
structural fingerprint diversity. Chemoinformatics study inferred the PL dataset has the highest diversity of 
compounds based on the Euclidean distance on molecular properties, scaffold diversity and pairwise similarity 
on fingerprint diversity. This study would hasten the process of anti-obesity drug discovery.   

1. Introduction 

The prevalence of obesity is increasing with the substantial lifestyle 
changes over the past three decades. Due to this remarkable increase in 
lifestyle changes, the risk factors are triggered which results in affecting 
people’s health condition [1]. These changes lead to significant illnesses 
such as hypertension, type-2 diabetes, cardiovascular diseases and 
hyperlipidaemia [2]. The effectiveness of synthetic drugs in targeting 
obesity was studied, which was found to possess consequent side effects 
[3]. To overcome these effects, there is a need to explore natural re-
sources to treat obesity. 

Nature plays a vital role as a rich, active pharmaceutical that aids in 
preventing and treating diseases. Natural-product drugs have emerged 
from an extensive variety of natural sources such as plants, marine or-
ganisms, microbes and animals [4]. Recent studies have also reported 
that 50% of the present drugs have originated from natural sources [5]. 
The inherent structural diversity of natural products is significantly 
large when compared to that of synthetic compounds which have given 
rise to modern drug discovery [6]. Natural products are proven to be an 
important source of lead structures that can be used as a template for the 
development and design of new drugs [7]. Natural products and their 
structural analogs can be a promising pool that is directly developed or 
used as starting points for optimization into novel drugs [8]. Previous 
studies have reported that novel marine metabolites from the algal 
source are found to exhibit anti-cancer and anti-obesity properties [9, 

10]. Natural products serve as the most traditional source for the 
development of new drugs [11]. Thus, the information on natural 
products becomes easy to access when it gets standardized and assem-
bled into a database. A publicly available database that provides 
extensive information about natural products is much needed to facili-
tate the importance of sharing it with relevant communities. This 
knowledge sharing from the database can minimize the timeline in drug 
discovery and helps in understanding the mechanism of compounds 
[12]. 

Significant progress has happened over the last few decades which 
had given rise to the curation of databases for various ailments. The 
accessibility of curated databases of all possible traditional medicinal 
plants and their chemical and biological functions generally aids in drug 
development. A repository which possesses collective information on 
the phytochemistry of plants, their chemical structure and ethno-
pharmacological behavior has already been reported in preceding da-
tabases such as KNApSAcK, TCMID, CVDHD, Phytochemica, Nutrichem, 
OCDD, DiaNAT- DB and COCONUT. KNApSAcK database describes the 
plant species and their metabolites and also relates it to their 
geographical zones [13]. The Traditional Chinese Medicine Integrative 
Database (TCMID) portrays the relationship between the different herbs 
and their diseases and facilitates the understanding of underlying 
mechanisms at a molecular level [14]. Cardiovascular disease herbal 
database for drug discovery and network pharmacology (CVDHD) de-
picts herbs of medicinal use, natural products and proteins that target 
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cardiovascular disease [15]. The tendency of producing therapeutic 
molecules extracted from medicinal plants are compiled in one single 
platform named Phytochemica [16]. Obesity and Co-morbid disease 
database (OCDD) involve the relationship of genes that target both 
obesity and its co-morbid diseases. The interaction among gene net-
works, functional illustration of common genes and key driver analyses 
have made it a more valuable and effective database [17]. DiaNAT DB is 
a comprehensive collection of unique anti-diabetic, natural product 
from medicinal plants [18]. COlleCtion of Open Natural ProdUcTs 
(COCONUT) is an open-source project for natural products storage, 
search and analysis [19]. In addition, IMPPAT (Indian Medicinal Plants, 
Phytochemistry and Therapeutics) database helps in providing a unified 
platform for carrying out all possible chemoinformatic approaches to 
accelerate drug discovery using natural sources [20]. However, for 
treating specific underlying condition such as obesity, an initial effort of 
the Anti-Obesity Compound Database (AOCD) was created, comprising 
natural anti-obesity compounds. This database stands out in delivering 
extensive information regarding the natural compounds that can be used 
for conducting in-silico approaches with the illustrated molecular 
properties, toxicity properties, and 3D structures of compounds. It also 
provides additional information on IC50/KI values to know about the 
biological activity of the plant, microbial or marine source. The com-
pouunds in AOCD database consists of different class of compounds such 
as flavonoids, terpenes, hydrolase, prenol lipids, polyketide, tannin, al-
kaloids, saponins, glycosides, phenolic compounds, fatty acids, steriod 
derivatives, cinnamic acids, napthoquinone derivates, etc. The database 
covers a datasets of anti-obesity compounds from three different 
mechanisms of action against obesity namely Pancreatic Lipase, Appe-
tite suppressant and Adipogenesis. 

This research deals with the chemoinformatics and characterization 
of chemical diversity studies of AOCD database compounds. Chemo-
informatics is a scientific discipline that employs various computational 
methods in analysing chemically related data [21]. Applications of 
chemoinformatics include analysis of physical, chemical and biological 
properties of molecules, macromolecular interactions, nutraceuticals, 

polymer chemistry and high throughput screening [22]. Recent report 
on chemoinformatics interest on natural products pointed of the 
exploration of natural product database, origination of secondary me-
tabolites databases and their expanded accessibilites. Analysis of 
chemical properties helps in the understanding of database compounds 
for screening and lead optimization [23]. Furthermore, chemical di-
versity was investigated using scaffold diversity, fingerprint diversity 
and physiochemical properties [24]. Recently, the development of drugs 
from the chemical properties of natural products have been analyzed 
[25]. Chemoinformatics characterization aids in designing virtual 
chemical databases by understanding the molecules characteristics and 
exploring as to what makes them distinct [26]. It also provides suitable 
tools for estimating the physicochemical properties of natural products 
and aids in the selection of macromolecular targets [27]. In addition, the 
development of chemoinformatics reformed the curation of metab-
olomics data, specifically with their suitable functional properties of 
annotated metabolites and their defined roles in metabolic pathways 
[28]. 

In this research, AOCD delivers a comprehensive resource on bo-
tanicals isolated from plant source(s) and their classification. It also 
includes compounds derived from marine seaweeds: Microbial sources 
are found to have a potent source of inhibition targeting obesity. This 
database provides extensive information on physicochemical de-
scriptors, pharmacokinetic properties, drug-like nature, computational 
toxicity prediction and lipophilic properties of compounds to support 
drug discovery. In addition to this, chemoinformatic-based diversity 
analysis using PUMA (Platform for Unified Molecular Analysis) is per-
formed to calculate properties of molecular descriptors, understand the 
diversity of scaffolds and to determine fingerprint diversity. 

2. Methodology 

2.1. Database structure 

The records in the database are produced by text mining of published 

Fig. 1. The search result page of AOCD Database.  
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literature. The design of this database is made using PHP 5.3 software 
(https://www.php.net/releases/5_3_0.php). At present, our AOCD 
database is an “in-house” database comprising 349 compounds out of 
which 307 compounds were retrieved from plant sources, 26 compounds 
from marine and 16 compounds from microbial sources. These com-
pounds cover 282 different species of plant origin, 14 different varieties 
of marine and 8 species of microbial origin and these are represented in 
Table S1 (supplementary file). In this database, we surveyed all possible 
natural compounds with anti-obesity potential targeting 219 com-
pounds against Pancreatic Lipase, 91 compounds against suppressing 
appetite and 102 compounds inhibiting the adipocyte differentiation. 
The biological activity of these compounds was identified based on their 
IC50/KI values and is included in this database. 

Compounds in AOCD were described by their molecular properties 
which includes molecular weight, molecular formula, InChl, canonical 
SMILES, IUPAC name, XLOGP3, number of hydrogen bond donors and 
acceptors, TPSA, number of rotatable bonds and Lipinski’s rule, 
bioavailability score, BBB permeant, LD50 values and toxicity class. The 
2D and 3D structures of the compound can be accessed through SDF or 
PNG format depending on the relevance. MarvinSketch [29] was 
employed to elucidate the 3D structure of each compound. The phar-
macokinetic properties were predicted using SwissADME [30]. The pa-
rameters that satisfied Lipinski’s property include MW ≤ 500 Dalton, 
cLogP value less than 5, a maximum of 10 H bond acceptors and 5 H 
bond donors [31]. Toxicity values were calculated using the ProTox-II 
server based on the Globally Harmonized System of Classification of 
Labelling of Chemicals (GHS) [32]. The toxicity classes range from I to 
VI and the input compound gets classified based on the toxicity level, 
wherein class I is classified as highly toxic. The class V and VI com-
pounds which possess LD50 values (2000 < LD50 ≤ 5000) and (LD50 >
5000) were found to be acceptable and non-toxic respectively. The web 
interface for AOCD is depicted in Fig. 1. The accessibility to this data-
base can be searched using accession number, the nomenclature of the 
compounds, SMILES notation or InChl, PubChem ID, mode of action and 
based on their origin. Text case is insensitive in the search field. This is 
available as an open-access database wherein the public can access and 
download relevant information as per requirement. 

2.2. Chemical space diversity 

Dataset diversity analysis and visualization were performed using 
PUMA, Version 1.0 [33]. Chemical space, molecular properties di-
versity, scaffold diversity and structural fingerprint diversity were 
analyzed for the compounds in the dataset using PUMA. Based on drug 
targets, AOCD compounds include three different datasets namely, 
Pancreatic Lipase (PL), Appetite Suppressant (AS) and Adipogenesis 
(AD). The number of compounds in each data set is shown in Fig. 2. Prior 
to the analysis, all compounds were curated by removing duplicates and 
open babel software was used to assign valences and protonation state of 
the compounds [34]. 

2.3. Calculation of chemical descriptor 

The chemical descriptors were generated using R package rcdk [35] 
to compute six molecular properties: molecular weight (MW), hydrogen 
bond donors (nHBDon), hydrogen bond acceptors (nHBAcc), topological 
polar surface area (TPSA), number of rotatable bonds (nRotB) and the 
octanol water partition coefficient (ALogP). The statistics of the six 
molecular properties were visualized as frequency histogram. The visual 
representation of the molecular descriptors was analyzed using Principal 
component analysis (PCA). 

2.4. Scaffold diversity 

The scaffold definition of molecular core without side chains as 
suggested by Bemis and Murko was used in this study [36]. PUMA use 
rcdk to obtain the cyclic Murcko ring systems of all compounds by 
removing the side chains [33]. Every scaffold (chemotype) is assigned 
with a unique identifier (ID) and Cyclic System Retrieval curves (CSR) 
were used to represent the distribution of chemotypes. The quantifica-
tion of scaffold diversity was calculated by area under the curve (AUC) 
and the fraction of chemotypes that recover 50% of the molecule on the 
dataset. Scaled Shannon Entropy (SSE) was calculated to identify the 
most populated scaffolds. 

2.5. Fingerprint diversity 

Fingerprint diversity of the tested datasets was computed using three 
molecular fingerprints options; The Extended Connectivity Fingerprints 
(ECFP_4) option encodes the circular type of fingerprints with a diam-
eter of four, PubChem represents PubChem’s binary substructure fin-
gerprints with 881 bits and MACCS computes the 166- bit MACCS keys 
[33]. 

3. Results and discussion 

3.1. Database features 

AOCD possesses a web interface at https://aocd.swmd.co.in/. 
Currently, the database holds entries for 349 natural compounds 
confining to various data fields, predominantly from plant extracts fol-
lowed by marine and microbial sources. The database delivers an 
exceptional source of information from the various descriptive fields 
thereby creating a comprehensive understanding of the natural com-
pounds that target obesity. The categorization for each entry in AOCD 
includes general information, predicted properties, structural informa-
tion, toxicity prediction and references. The basic information section 
provides us with critical details on the accession number, followed by an 
external link for PubChem Id. Additionally, it contains particulars on the 
molecular formula and molecular weight of each compound along with 
the scientific name, origin, class of compounds and biological activity of 
the compounds retrieved from the literature. The structural information 
mainly deals with IUPAC name of the compound, SMILES notation or 
InChl along with the SDF and PNG format for 2D and 3D structures, 

Fig. 2. Distribution of anti-obesity compounds based on three different modes 
of action. Total number of compounds in AOCD database is 349, 219 com-
pounds targeting Pancreatic Lipase (PL), 91 compounds targeting Appetite 
Suppressant (AS) and 102 compounds targeting Adipogenesis (AD). 
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respectively. The predicted properties generally encompass the pre-
computed chemical descriptors of the compounds. It was observed that 
226 compounds have a molecular weight less than 500 Daltons, 245 
compounds showed cLogP value less than five, 228 compounds resulted 
in a maximum of 5 H bond donor and 254 compounds exhibited a 
maximum of 10 H bond acceptor (Fig. 3). 

Lipinski’s rule is focused to guide the design of drug-like compounds 
based on specific molecular properties. Further to confirm the oral 
bioavailability of the compounds, toxicity prediction results suggested 
that compounds that come under the toxicity class of V can be consid-
ered as a drug. Twenty-three compounds that come toxicity class VI are 
non-toxic compounds. Earlier studies have reported that flavonoids and 
terpenes classification of compounds were found to have anti-obesity 
activity [3]. These flavonoids and terpene type of compounds are 
majorly present in the AOCD database. 

The toxicity section displays the LD50 values and class of toxicity of 
the compounds. It was found that 185 compounds showed median lethal 
dose (LD50) values above 2000 which comes under toxicity class 5 and 6 
according to the GHS system. Anti-obesity compounds from the AOCD 
database comes under the different classifications of compounds 
(Fig. 4). The structural diversity showed overall flavonoids are more, 
specifically in the PL dataset followed by terpenes, hydrolase, prenol 
lipids, etc. The bibliography section displays the relevant references to 
the respective compounds. A total of 197 literature studies were text 

mined for the reference section. 

3.2. Calculation of chemical descriptor 

The Platform for unified molecular analysis software was used for the 
calculation of molecular descriptors. The statistical difference between 
the datasets were determined using non-parametric Wilcoxon rank sum 
test. The statistical distribution of six molecular properties: molecular 
weight (MW), topological polar surface area (TPSA), hydrogen bond 
donors (nHBDon), hydrogen bond acceptors (nHBAcc), octanol-water 
partition coefficient (ALogP) and number of rotatable bonds (nRotB) 
which have pharmaceutical relevance are provided in Table 1. 

Molecular size was represented by MW, which indicated that PL 
datasets have the highest average MW value of 512.97 and largest MW 
of 1729.47 when compared to other dataset values. ALogP, HBDon and 
HBAcc determine the hydrophilicity of the datasets. It was noticed that 
PL dataset has the highest mean values considering nHBAcc and 
nHBDon properties followed by AS and AD. AD showed the highest 
mean value for octanol/water partition coefficient property followed by 
PL and AS datasets. The flexibility of the tested dataset compounds was 
represented using TPSA, and the nRotB. PL dataset showed highest value 
of calculated flexibility parameters. There is no statistical significance 
between MW of PL datasets when compared to AS or AD datasets. In 
addition to this, significant difference between AS and AD datasets was 

Fig. 3. Molecular properties of 349 compounds in AOCD database. X axis represents (a) molecular weight in daltons, (b) ALogP, (c) hydrogen-bond donors, (d) 
hydrogen-bond acceptors, (e) class of toxicity and (f) rotatable bonds; Y axis represents No. of compounds. 
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observed. The statistical significance difference between PL and AD 
datasets was observed in all calculated hydrophilic descriptors. 
Regarding the molecular flexibility, AD dataset showed significant dif-
ference when compared to AS or PL datasets. The molecular properties 
of the tested datasets were plotted as frequency histograms as shown in 
Fig. 5. 

Principal component analysis facilitates the two-dimensional mode 
of visualization of database properties as depicted in Fig. 6. PCA of anti- 
obesity compound database was represented by three principal com-
ponents (PC1, PC2 and PC3) which resulted in 95% variability and the 
summary of PCA loadings is given in Table 2. Interestingly, it was noted 
that from Table 2, six molecular descriptors were found to be positive to 
PC1, which indicates rise in the descriptor values along x-axis. PC2 is 
mostly associated with molecular weight and PC3 is associated with 
TPSA properties. 

In addition to chemical space visualization, outliers have been 
recognized from each dataset of the AOCD database (Fig. 6). Five out-
liers are identified from the PL dataset, nine outliers are recognized from 
AS dataset and six outliers from the AD dataset. 

PL dataset contains five outliers, which includes AO240 Anthocyanin1, 
AO224-(6S,9R,12R)-1-((R)-1-((R)-2-((S)-1-((S)-5-amino-2-((R)-2-amino-3- 
mercaptopropanamido)-5-oxopentanoyl) pyrrolidine-2-carboxamido)-3- 
(1H-imidazole-5-yl) propanoyl) pyrrolidin-2-yl)-6-(3-amino-3-oxopropyl)- 
9-((R)-1-hydroxyethyl)-12-(mercaptomethyl)-1,4,7,10-tetraoxo-2,5,8,11- 
tetraazatridecan-13-oic acid, AO159- Punicalagin, AO154- Platycodin D 
and AO327 Triolein (Fig. 7). 

PL dataset containing anthocyanin 1, a flavonoid isolated from Morus 
austrails poir, was reported to prevent obesity [37]. Triolein from marine 
algae Caulerpa taxifolia involved in the inhibition of lipase enzyme [38]. 
Another PL dataset outlier (6S,9R,12R)-1-((R)-1-((R)-2-((S)-1-((S)-5-ami-
no-2-((R)-2-amino-3-mercaptopropanamido)-5-oxopentanoyl) pyrrolidine- 
2-carboxamido)-3-(1H-imidazole-5-yl) propanoyl) pyrrolidin-2-yl)-6-(3- 
amino-3-oxopropyl)-9-((R)-1-hydroxyethyl)-12-(mercaptomethyl)-1,4,7, 
10-tetraoxo-2,5,8,11-tetraazatridecan-13-oic acid of hydrolase classifica-
tion was extracted from Curcuma amada [39]. Platycodin D extracted from 
Platycodon grandiflorum which belongs to the class of terpenes exhibited 
anti-obesity effects. Punicalagin from Punica granatum belongs to the class of 
tannins was reported to have anti-obesity effects [40]. 

AS dataset has recognized nine outliers which includes AO160- 
Punicalin, AO101- Ginsenoside Rb1, AO063 – Corilagin, AO193- vitisin 
A, AO163- Quercetin 3,7 diglucoside, AO276- Levan n, AO016- Anno-
hexocin, AO154 Platycodin D and AO159 Punicalagin (Fig. 8). AS 
dataset contains Punicalin, a class of tannin, isolated from Punica gran-
atum reported for anti-obesity effect [40]. Ginsenoside Rb1 extracted 
from Panax quinquefolium was also found to have anti-obesity activity 
[41]. Another AS outlier Corilagin, a tannin class of compound obtained 
from Geranii herba reported for anti-viral, anti-obesity, 
anti-inflammatory activities [42]. Vitisin, a flavonoid class of com-
pound, isolated from Vitis vinifera found to possess anti-inflammatory, 
neuroprotective, and anti-cholesterolemic activities [43]. Quercetin 3, 
7 diglucoside extracted from Taraxacum officinale which belongs to the 
class of flavonoid has anti-inflammatory, antioxidant and anti-obesity 
activities [44]. Levan, a polysaccharide, obtained from Lolium perenne 
reported to prevent obesity [45]. Annohexocin isolated from Annona 
muricata which belongs to the class of polyketide reported for the 
anti-obesity effect (Elekofehinti 2020). 

Fig. 4. Different class of compounds reported in AOCD database.  

Table 1 
Statistical distribution of the calculated chemical descriptors.  

Chemical descriptors Dataset Min 1st Qua Median Mean 3rdQub Max Std.Devc 

MW PL 123.03 317.10 444.23 512.97 626.36 1729.47 271.52 
AS 123.03 280.69 332.19 413.90 594.44 1224.57 216.58 
AD 0 235.03 314.13 374.96 447.49 1422.65 218.65 

TPSA PL 0 66.76 117.76 152.72 218.29 695.41 119.16 
AS 9.23 46.82 99.28 116.52 136.68 510.94 97.55 
AD 0 41.58 86.93 104.20 129.82 565.05 94.66 

nRotB PL 0 3 6 7.36 10 53 6.66 
AS 0 2 5 8.69 14.5 26 8.94 
AD 0 1 3.5 4.91 7.75 31 5.18 

nHBDon PL 0 1 4 5.12 8 25 4.83 
AS 0 1 3 4.12 5 17 3.85 
AD 0 1 2.5 3.58 5 22 3.73 

nHBAcc PL 0 4 7 9.25 12 43 7.07 
AS 1 3 6 6.91 8 30 5.72 
AD 0 3 4.5 6.09 7.75 35 5.67 

ALogP PL − 11.19 − 2.71 − 0.94 − 0.92 1.24 8.93 2.78 
AS − 8.78 − 4.51 − 1.303 − 2.39 0.13 2.53 3.30 
AD − 11.12 − 1.194 0 0.15 1.36 8.55 1 

MW: molecular weight, TPSA: topological polar surface area, nRotB: number of rotatable bonds, nHBAcc: number of hydrogen bond acceptors, nHBDon: number of 
hydrogen bond donors, AlogP: octanol/water partition coefficient. 

a First quarter. 
b Third quarter. 
c Standard deviation. 
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Fig. 5. Frequency distribution of chemical descriptors of tested datasets, including PL, AS and AD datasets.  

Fig. 6. Principal component analysis (PCA) for all the tested datasets (a); PL, AS and AD datasets with outlier’s (b), (c) and (d).  
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AD dataset contains six outliers which includes AO044- Capsicoside, 
AO238- 9,12,15 Octadecatrienoic acid, AO067-Crocin, AO105- Ginse-
noside Re, AO187- Theaflavin 3,3′-digallate, AO082- Ellagitannins 
(Fig. 9). Capsicoside, an outlier of AD dataset isolated from Capsicum 
annum which belongs to the class of steroids involved in the treatment of 
obesity [46]. 9,12,15 Octadecatrienoic acid belongs to the class of 
flavonoid isolated from Portulaca oleracea reported for obesity [47]. 
Crocin, another AD outlier, isolated from Crocus Sativus which belongs 
to prenol Lipid was found to possess anti-oxidant and anti-obesity ac-
tivities [48]. Ginsenoside, a glycoside from Panax ginseng was found to 
possess anti-diabetic, anti-microbial, anti-cardiovascular, anti-in-
flammatory, anti-oxidant and anti-obesity activities [49]. Ellagitannins, 
a flavonoid obtained from Camellia sinensis, were reported for 
anti-obesity effect [50]. 

Pairwise comparison of inter- and intra-distances of dataset com-
pounds was computed with six molecular properties using Euclidean 
distance as shown in Fig. 10. The highest inter-distance was found be-
tween AS and AD datasets, followed by PL and AD and finally between 
PL and AD. Further, PL dataset possessed the highest intra-distance di-
versity based on the calculated molecular properties. Euclidean distance 
computed that PL datasets possessed the highest intra-distance diversity 
with highest number of compounds (n = 219) when compared to the 
other datasets in database. The highest number of scaffolds were found 
in the PL dataset which can be indicated by the effect of the size of the 
datasets. 

3.3. Scaffold diversity of AOCD database 

The statistical scaffold parameters that summarize compound number 
(M), unique scaffold (N), number of chemotypes containing only one 
compound (NSING), the fraction of chemotypes and singletons relative to 
the number of molecules in the data set (FNM and FNSING. M, respec-
tively) is represented in Table 3. A total of 104 scaffolds were generated 
from all datasets, which were further divided into 47 scaffolds for PL 
datasets, 27 scaffolds for AS datasets and 30 scaffolds for AD datasets 
(Fig. 11a). PL dataset has the highest scaffold number when compared to 
AD followed by AS. Eleven common scaffolds were found to be common 
among all three datasets. In addition to this, PL and AS datasets possessed 
the highest number of common identical scaffolds (Fig. 11b). 

The distribution of chemotypes were analyzed by computing CSR 
curves (Fig. 11c). The CSR curve is obtained by plotting a fraction of 
scaffolds on the x-axis and a fraction of compounds on the y-axis. 
Quantification of the CSR curve (Fig. 11c) using the area under the curve 
(AUC) and a fraction of chemotypes required to acquire half of the 
compounds (F50) can determine more diverse datasets based on their 
scaffolds. AS dataset possessed the highest scaffold diversity with AUC 
and F50 values of 0.78 and 0.07, respectively, followed by AD and PL 
datasets. Earlier studies have reported that the highest F50 value along 
with AUC value close to 0.5 possessed the highest scaffold diverse 
dataset [33]. Findings from the CSR curve showed that AS dataset curve 
is close to the diagonal with the highest F50 values which imply the 
highest scaffold diversity when compared to AD and PL datasets. 

Scaffold diversity for all datasets was described using CSR curves, 
while the most populated frequent scaffold employs Scaled Shannon 
Entropy (SSE) [51]. The most frequent scaffold was calculated using 
Scaled Shannon entropy (SSE). These SSE values vary between 0 and 1, 
where 0 indicates most of the compounds in the dataset share the same 
scaffold and 1 implies all scaffolds consist of the same number of com-
pounds. Scaled Shannon Entropy (SSE) for the most populated scaffold 
(10–60 scaffolds) is given in Table 4. 

When comparing the scaffold diversity for the tested datasets using 
SSE at the level of 10 scaffolds, the PL dataset is more diverse with SSE 
value of 0.96 followed by AD and AS datasets. The most populated 
scaffold (SSE10) for each dataset such as PL, AS and AD is represented in 

Table 2 
PCA contribution of six Molecular properties to each Principal component.  

Chemical descriptors PC1 PC2 PC3 

MW 0.43 − 0.02 − 0.51 
TPSA 0.46 0.21 − 0.03 
nRotB 0.21 − 0.82 − 0.32 
nHBDon 0.44 0.29 0.09 
nHBAcc 0.46 0.18 − 0.04 
ALogP 0.35 0.37 − 0.78 
Proportion of variance 89.69 97.89 99.12 

PC1- First Principal component; PC2- Second Principal component; PC3- Third 
Principal Component. 

Fig. 7. Identified Outlier’s in PL dataset representing chemical structure along with its molecular descriptors.  
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Fig. 12, Figs. 13 and 14, respectively. 
One of the most common scaffolds among the three datasets is hy-

droxy citric acid with scaffold ID 1, which has a scaffold frequency of 15 
for PL datasets, 12 for AS datasets and 11 for AD datasets. This scaffold 
accounts for 31.9%, 44.4%, and 66.6% of the total number of 

compounds for PL, AS and AD datasets, respectively. Another scaffold 
gallocatechin is found to be common in PL (with a scaffold frequency of 
5) and AS datasets (with a scaffold frequency of 3). In addition, gallic 
acid and Myricetin share a common scaffold among PL and AD datasets. 
Further, Daidzein is found to be common in AS and AD with scaffold 

Fig. 8. Identified Outlier’s in AS dataset representing chemical structure along with its molecular descriptors.  

Fig. 9. Identified Outlier’s in AD dataset representing chemical structure along with its molecular descriptors.  
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frequencies of 2 and 3, respectively. The most common scaffold hydroxy 
citric acid among the three datasets exhibited anti-inflammation, anti- 
oxidant, anti-cancer and anti-obesity activities [52–54]. 

3.4. Fingerprint diversity 

The distribution of three fingerprint diversities including ECFP_4, 
PubChem (881-Bits) and MACCS keys (166-Bits) was computed and 
represented in cumulative distribution functions (CDFs) (Fig. 15 and 
Table 5). 

The results suggested that all three datasets followed the same path 
and it is difficult to distinguish the fingerprint diversity based on ECFP_4 
(Fig. 15a). Thus, the fingerprint diversity of ECFP_4 for tested dataset 
showed no significant difference as all the datasets followed same 
mathematical path. According to MACCS (166-Bits) of similarity matrix, 
the PL dataset showed less diversity with a similarity median of 0.44 
followed by AS and AD datasets (Fig. 15b). Further, PubChem (881-Bits) 
pairwise similarity data suggested that AD is less diverse with similarity 
median of 0.40 when compared to AS and PL datasets (Fig. 15c). Thus, 
based on the chemoinformatics study performed using PUMA for AOCD 
database, it was revealed that PL dataset compounds exhibited the 
highest diversity when compared to AS and AD datasets which is in 
agreement with the size of PL dataset. 

Fig. 10. Euclidean distance correlation matrix computed with six molecular 
properties for the compounds in Dataset. 

Table 3 
Scaffold counts and CSR curve parameters, including AUC and F50 for PL, AS and AD datasets.  

Datasets M N FNM NSING FNSING.M FNSING.N AUC F50 

PL 219 47 0.21 30 0.13 0.63 0.83 0.06 
AS 91 27 0.29 16 0.17 0.59 0.78 0.07 
AD 102 30 0.29 16 0.15 0.53 0.78 0.06 

M: Total number of compounds in a dataset, N: Total number of scaffolds in a dataset, NSING: Number of scaffolds with only one compound, AUC: area under CSR 
curve, F50: fraction of chemotypes required to acquire half of the compounds, PL: Pancreatic Lipase, AS: Appetite Suppressant and AD: Adipogenesis. 

Fig. 11. The number of Scaffolds generated based on Bemis and Murko system (a); Venn diagram describing the common scaffolds among tested datasets (b) and 
CSR curves (c). 
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4. Conclusion 

Natural plant-based compounds provide a vast pool of inhibition 
with the ability to be developed into clinical products. Thus, in this 
AOCD database, we surveyed all possible bio-active compounds with 
anti-obesity properties targeting pancreatic lipase, suppressing appetite, 
and adipocyte differentiation. The database delivers an exceptional 

source of information from various descriptive fields, thereby creating a 
comprehensive understanding of the natural compounds that target 
obesity. The AOCD database was divided into three datasets based on 
the mechanism of action as PL, AS, and AD datasets. Principal compo-
nent analysis was used for visualization of chemical space based on six 
molecular properties. Based on the molecular properties, Euclidean 
distances for datasets were computed to analyze the inter- and intra- 
dataset distance. It was suggested that the PL dataset exhibited the 
highest dataset diversity of compounds when compared to AS and AD 
datasets. Scaffold diversity analysis also revealed that the PL dataset 
showed the highest scaffolds among other datasets of compounds. The 
pairwise similarity distribution data computed by PubChem (881-Bits) 
showed that PL datasets has the highest fingerprint diversity when 
compared to other datasets of compounds in AOCD database. Thus, the 
AOCD database will keep expanding with more and more information 
relevant to molecular interactions with additional chemical descriptors. 

Table 4 
Scaled Shannon Entropy (SSE) for the most populated scaffold (10–60 scaffolds).  

Datasets SSE10 SSE20 SSE30 SSE40 SSE50 SSE60 

PL 0.96 0.96 0.94 0.92 0.92 0.92 
AS 0.89 0.87 0.88 NA NA NA 
AD 0.90 0.88 0.89 0.9 0.91 NA 

NA: Not Applicable. 

Fig. 12. Scaffold frequency histogram for PL dataset (a); The chemical structure of the most populated 10 scaffolds (SSE10) in PL dataset. The number under each 
structure indicates the scaffold ID/frequency of the corresponding scaffold in each data set with percentage of scaffolds in each dataset (b). 

Fig. 13. Scaffold frequency histogram for AS dataset (a); The chemical structure of the most populated 10 scaffolds (SSE10) in AS dataset. The number under each 
structure indicates the scaffold ID/frequency of the corresponding scaffold in each data set with percentage of scaffolds in each dataset (b). 
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The users can contribute pertinent information to the authors through 
email. Periodic upgradation of the database happens based on current 
trends and research. Chemoinformatic analysis pertaining to drug dis-
covery from this database can be constructively utilized for studies such 
as in silico approach, pharmacophore search, molecular docking, dy-
namic studies, and so on. 

Funding 
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Founder-Chancellor Shri. N.P.V. Ramasamy Udayar Research Fellow-
ship (U02B190575). 

Fig. 14. Scaffold frequency histogram for AD dataset (a); The chemical structure of the most populated 10 scaffolds (SSE10) in AD dataset. The number under each 
structure indicates the scaffold ID/frequency of the corresponding scaffold in each data set with percentage of scaffolds in each dataset (b). 

Fig. 15. Cumulative distribution functions (CDFs) of the similarity regarding pairwise values computed using extended connectivity fingerprints with a diameter of 4 
(a); MACCS keys (b) and PubChem (c). 

Table 5 
Statistical distribution of the datasets pairwise similarity data computed using Tanimoto coefficient, extended connectivity fingerprints with a diameter of 4 (ECFP_4), 
MACCS (166-Bits) and PubChem (881-bits).  

Fingerprint Dataset Min 1st Qua Median Mean 3rd Qub Max Std. devc 

ECFP_4 PL 0 0.06 0.09 0.11 0.12 1 0.09 
AS 0 0.06 0.08 0.11 0.12 1 0.12 
AD 0 0.05 0.08 0.10 0.12 1 0.08 

MACCS (166-Bits) PL 0 0.29 0.44 0.45 0.58 1 0.20 
AS 0.06 0.3 0.41 0.44 0.54 1 0.19 
AD 0 0.25 0.41 0.41 0.55 1 0.21 

PubChem (881-Bits) PL 0.05 0.27 0.37 0.43 0.54 1 0.21 
AS 0.06 0.28 0.39 0.43 0.55 1 0.20 
AD 0 0.28 0.40 0.45 0.66 1 0.22  

a First quarter. 
b Third quarter. 
c Standard deviation. 
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